5,852 research outputs found

    Novel results in STM, ARPES, HREELS, Nernst, neutron, Raman, and isotope substitution experiments and their relation to bosonic modes and charge inhomogeneity, from perspective of negative-Ueff boson-fermion modelling of HTSC

    Full text link
    This paper seeks to synthesize much recent work on the HTSC materials around the latest STM results from Davis and coworkers. The conductance diffuse scattering results in particular are used as point of entry to discuss bosonic modes, both of condensed and uncondensed form. The bosonic mode picture is essential to understanding an ever growing range of observations within the HTSC field. The work is expounded within the context of the negative-U, boson-fermion modelling long advocated by the author. This general approach is presently seeing much theoretical development, into which I have looked to couple many of the experimental advances. While the formal theory is not yet sufficiently detailed to cover adequately all the experimental complexities presented by the real cuprate systems, it is clear that it affords very appreciable support to the line taken. An attempt is made throughout to say why and how it is that these events are tied so very closely to this particular set of materials.Comment: 36 pages pdf with 3 figures and 1 table included, Submitted to J. Phys. Cond. Mat

    ciliaFA : a research tool for automated, high-throughput measurement of ciliary beat frequency using freely available software

    Get PDF
    Background: Analysis of ciliary function for assessment of patients suspected of primary ciliary dyskinesia (PCD) and for research studies of respiratory and ependymal cilia requires assessment of both ciliary beat pattern and beat frequency. While direct measurement of beat frequency from high-speed video recordings is the most accurate and reproducible technique it is extremely time consuming. The aim of this study was to develop a freely available automated method of ciliary beat frequency analysis from digital video (AVI) files that runs on open-source software (ImageJ) coupled to Microsoft Excel, and to validate this by comparison to the direct measuring high-speed video recordings of respiratory and ependymal cilia. These models allowed comparison to cilia beating between 3 and 52 Hz. Methods: Digital video files of motile ciliated ependymal (frequency range 34 to 52 Hz) and respiratory epithelial cells (frequency 3 to 18 Hz) were captured using a high-speed digital video recorder. To cover the range above between 18 and 37 Hz the frequency of ependymal cilia were slowed by the addition of the pneumococcal toxin pneumolysin. Measurements made directly by timing a given number of individual ciliary beat cycles were compared with those obtained using the automated ciliaFA system. Results: The overall mean difference (± SD) between the ciliaFA and direct measurement high-speed digital imaging methods was −0.05 ± 1.25 Hz, the correlation coefficient was shown to be 0.991 and the Bland-Altman limits of agreement were from −1.99 to 1.49 Hz for respiratory and from −2.55 to 3.25 Hz for ependymal cilia. Conclusions: A plugin for ImageJ was developed that extracts pixel intensities and performs fast Fourier transformation (FFT) using Microsoft Excel. The ciliaFA software allowed automated, high throughput measurement of respiratory and ependymal ciliary beat frequency (range 3 to 52 Hz) and avoids operator error due to selection bias. We have included free access to the ciliaFA plugin and installation instructions in Additional file 1 accompanying this manuscript that other researchers may use

    Dancing the Pluriverse: Indigenous Performance as Ontological Praxis

    Get PDF
    This article discusses ways that Indigenous dance is an ontological praxis that is embodied and telluric, meaning “of the earth.” It looks at how dancing bodies perform in relationship to ecosystems and entities within them, producing ontological distinctions and hierarchies that are often imbued with power. This makes dance a site of ontological struggle that potentially challenges the delusional ontological universality undergirding imperialism, genocide, and ecocide. The author explores these theoretical propositions through her participation in Oxlaval Q'anil, an emerging Ixil Maya dance project in Guatemala, and Dancing Earth, an itinerant and inter-tribal U.S.-based company founded by Rulan Tangen eleven years ago

    Aerothermodynamic Analysis of a Reentry Brazilian Satellite

    Full text link
    This work deals with a computational investigation on the small ballistic reentry Brazilian vehicle SARA (acronyms for SAt\'elite de Reentrada Atmosf\'erica). Hypersonic flows over the vehicle SARA at zero-degree angle of attack in a chemical equilibrium and thermal non-equilibrium are modeled by the Direct Simulation Monte Carlo (DSMC) method, which has become the main technique for studying complex multidimensional rarefied flows, and that properly accounts for the non-equilibrium aspects of the flows. The emphasis of this paper is to examine the behavior of the primary properties during the high altitude portion of SARA reentry. In this way, velocity, density, pressure and temperature field are investigated for altitudes of 100, 95, 90, 85 and 80 km. In addition, comparisons based on geometry are made between axisymmetric and planar two-dimensional configurations. Some significant differences between these configurations were noted on the flowfield structure in the reentry trajectory. The analysis showed that the flow disturbances have different influence on velocity, density, pressure and temperature along the stagnation streamline ahead of the capsule nose. It was found that the stagnation region is a thermally stressed zone. It was also found that the stagnation region is a zone of strong compression, high wall pressure. Wall pressure distributions are compared with those of available experimental data and good agreement is found along the spherical nose for the altitude range investigated.Comment: The paper will be published in Vol. 42 of the Brazilian Journal of Physic

    Reduction of circulating cholesterol and apolipoprotein levels during sepsis

    Get PDF
    Sepsis with multiple organ failure is frequently associated with a substantial decrease of cholesterol levels. This decrease of cholesterol is strongly associated with mortality suggesting a direct relation between inflammatory conditions and altered cholesterol homeostasis. The host response during sepsis is mediated by cytokines and growth factors, which are capable of influencing lipid metabolism. Conversely lipoproteins are also capable of modulating cytokine production during the inflammatory response. Therefore the decrease in circulating cholesterol levels seems to play a crucial role in the pathophysiology of sepsis. In this review the interaction between cytokines and lipid metabolism and its clinical consequences will be discussed

    High-dimensional simplexes for supermetric search

    Get PDF
    In a metric space, triangle inequality implies that, for any three objects, a triangle with edge lengths corresponding to their pairwise distances can be formed. The n-point property is a generalisation of this where, for any (n+1) objects in the space, there exists an n-dimensional simplex whose edge lengths correspond to the distances among the objects. In general, metric spaces do not have this property; however in 1953, Blumenthal showed that any semi-metric space which is isometrically embeddable in a Hilbert space also has the n-point property. We have previously called such spaces supermetric spaces, and have shown that many metric spaces are also supermetric, including Euclidean, Cosine, Jensen-Shannon and Triangular spaces of any dimension. Here we show how such simplexes can be constructed from only their edge lengths, and we show how the geometry of the simplexes can be used to determine lower and upper bounds on unknown distances within the original space. By increasing the number of dimensions, these bounds converge to the true distance. Finally we show that for any Hilbert-embeddable space, it is possible to construct Euclidean spaces of arbitrary dimensions, from which these lower and upper bounds of the original space can be determined. These spaces may be much cheaper to query than the original. For similarity search, the engineering tradeoffs are good: we show significant reductions in data size and metric cost with little loss of accuracy, leading to a significant overall improvement in exact search performance

    The evolution of the terrestrial-terminating Irish Sea glacier during the last glaciation

    Get PDF
    Here we reconstruct the last advance to maximum limits and retreat of the Irish Sea Glacier (ISG), the only land‐terminating ice lobe of the western British Irish Ice Sheet. A series of reverse bedrock slopes rendered proglacial lakes endemic, forming time‐transgressive moraine‐ and bedrock‐dammed basins that evolved with ice marginal retreat. Combining, for the first time on glacial sediments, optically stimulated luminescence (OSL) bleaching profiles for cobbles with single grain and small aliquot OSL measurements on sands, has produced a coherent chronology from these heterogeneously bleached samples. This chronology constrains what is globally an early build‐up of ice during late Marine Isotope Stage 3 and Greenland Stadial (GS) 5, with ice margins reaching south Lancashire by 30 ± 1.2 ka, followed by a 120‐km advance at 28.3 ± 1.4 ka reaching its 26.5 ± 1.1 ka maximum extent during GS‐3. Early retreat during GS‐3 reflects piracy of ice sources shared with the Irish‐Sea Ice Stream (ISIS), starving the ISG. With ISG retreat, an opportunistic readvance of Welsh ice during GS‐2 rode over the ISG moraines occupying the space vacated, with ice margins oscillating within a substantial glacial over‐deepening. Our geomorphological chronosequence shows a glacial system forced by climate but mediated by piracy of ice sources shared with the ISIS, changing flow regimes and fronting environments

    Increasing the frequency of hand washing by healthcare workers does not lead to commensurate reductions in staphylococcal infection in a hospital ward

    Get PDF
    Hand hygiene is generally considered to be the most important measure that can be applied to prevent the spread of healthcare-associated infection (HAI). Continuous emphasis on this intervention has lead to the widespread opinion that HAI rates can be greatly reduced by increased hand hygiene compliance alone. However, this assumes that the effectiveness of hand hygiene is not constrained by other factors and that improved compliance in excess of a given level, in itself, will result in a commensurate reduction in the incidence of HAI. However, several researchers have found the law of diminishing returns to apply to hand hygiene, with the greatest benefits occurring in the first 20% or so of compliance, and others have demonstrated that poor cohorting of nursing staff profoundly influences the effectiveness of hand hygiene measures. Collectively, these findings raise intriguing questions about the extent to which increasing compliance alone can further reduce rates of HAI. In order to investigate these issues further, we constructed a deterministic Ross-Macdonald model and applied it to a hypothetical general medical ward. In this model the transmission of staphylococcal infection was assumed to occur after contact with the transiently colonized hands of HCWs, who, in turn, acquire contamination only by touching colonized patients. The aim of the study was to evaluate the impact of imperfect hand cleansing on the transmission of staphylococcal infection and to identify, whether there is a limit, above which further hand hygiene compliance is unlikely to be of benefit. The model demonstrated that if transmission is solely via the hands of HCWs, it should, under most circumstances, be possible to prevent outbreaks of staphylococcal infection from occurring at a hand cleansing frequencies <50%, even with imperfect hand hygiene. The analysis also indicated that the relationship between hand cleansing efficacy and frequency is not linear - as efficacy decreases, so the hand cleansing frequency required to ensure R0<1 increases disproportionately. Although our study confirmed hand hygiene to be an effective control measure, it demonstrated that the law of diminishing returns applies, with the greatest benefit derived from the first 20% or so of compliance. Indeed, our analysis suggests that there is little benefit to be accrued from very high levels of hand cleansing and that in most situations compliance >40% should be enough to prevent outbreaks of staphylococcal infection occurring, if transmission is solely via the hands of HCWs. Furthermore we identified a non-linear relationship between hand cleansing efficacy and frequency, suggesting that it is important to maximise the efficacy of the hand cleansing process

    Query Filtering with Low-Dimensional Local Embeddings

    Get PDF
    The concept of local pivoting is to partition a metric space so that each element in the space is associated with precisely one of a fixed set of reference objects or pivots. The idea is that each object of the data set is associated with the reference object that is best suited to filter that particular object if it is not relevant to a query, maximising the probability of excluding it from a search. The notion does not in itself lead to a scalable search mechanism, but instead gives a good chance of exclusion based on a tiny memory footprint and a fast calculation. It is therefore most useful in contexts where main memory is at a premium, or in conjunction with another, scalable, mechanism. In this paper we apply similar reasoning to metric spaces which possess the four-point property, which notably include Euclidean, Cosine, Triangular, Jensen-Shannon, and Quadratic Form. In this case, each element of the space can be associated with two reference objects, and a four-point lower-bound property is used instead of the simple triangle inequality. The probability of exclusion is strictly greater than with simple local pivoting; the space required per object and the calculation are again tiny in relative terms. We show that the resulting mechanism can be very effective. A consequence of using the four-point property is that, for m reference points, there arèarè m 2 ´ pivot pairs to choose from, giving a very good chance of a good selection being available from a small number of distance calculations. Finding the best pair has a quadratic cost with the number of references ; however, we provide experimental evidence that good heuristics exist. Finally, we show how the resulting mechanism can be integrated with a more scalable technique to provide a very significant performance improvement, for a very small overhead in build-time and memory cost. Keywords: metric search · extreme pivoting · supermetric space · four-point property · pivot based index 2 Chávez et al

    The biosocial event : responding to innovation in the life sciences

    Get PDF
    Innovation in the life sciences calls for reflection on how sociologies separate and relate life processes and social processes. To this end we introduce the concept of the ‘biosocial event’. Some life processes and social processes have more mutual relevance than others. Some of these relationships are more negotiable than others. We show that levels of relevance and negotiability are not static but can change within existing relationships. Such changes, or biosocial events, lie at the heart of much unplanned biosocial novelty and much deliberate innovation. We illustrate and explore the concept through two examples – meningitis infection and epidemic, and the use of sonic ‘teen deterrents’ in urban settings. We then consider its value in developing sociological practice oriented to critically constructive engagement with innovation in the life sciences
    corecore